随着网络时代的飞速发展,技术与体验的改变与改进也随之迅速变化。因此,我们正面临着诸多网络安全设备要分析的数据包数据量急剧上升、安全网关所要进行的分析的数据量大增、安全监测的内容不断细化等一系列安全问题,使得安全产品所要监测和分析比以往更多的数据。
正如上述情况所说的那样,随着企业和组织安全体系架构变得越来越复杂,与之俱来的是各类安全数据正在变得越来越多。而传统的分析能力已不足以应对当下安全数据的分析。在面对新型威胁的兴起时,传统的分析方法无法对更多的安全信息做出准确分析,也就更加无从谈起更加快速的做出判定和响应。而以上信息安全所面临的这些问题,正是大数据时代带来的挑战。
在此背景下,对信息安全业而言,如何将大数据技术应用于安全领域、将大数据分析技术应用于信息安全的技术的大数据安全分析的需求正变得愈加急迫。而与此同时,安全数据的数量、速度、种类的迅速膨胀,不仅带来了海量异构数据的融合、存储和管理的问题,更是对传统的安全分析方法带来了挑战。
目前,市场上绝大多数安全分析工具和方法都是针对小数据量设计的,在面对大数据量时难以为继。新的攻击手段层出不穷,需要检测的数据越来越多,传统的分析技术已是不堪重负。一方面,高速海量安全数据的采集和存储变得困难,而异构数据的存储和管理同样变得困难;而传统的安全分析技术对历史数据的检测能力很弱,对安全事件的调查效率十分低;以往,安全系统相互独立,无法有效地进行协同工作,对于趋势性的威胁更是无法预测,在应对当今诸如APT等高级威胁的攻击时防护效果十分薄弱。另一方面,传统的分析方法大都采用基于规则和特征的分析引擎,必须要有规则库和特征库才能工作,而规则和特征只能对已知的攻击和威胁进行描述,无法识别未知的攻击,或者是尚未被描述成规则的攻击和威胁。
因此,目前对于大数据安全分析而言,如何对大数据进行安全分析是十分重要的。从长远来看,对大数据的安全分析,能够很好地解决信息数据采集、存储等问题的安全问题,借助基于大数据分析技术的机器学习和数据挖据算法,亦能够更加智能地洞悉信息与网络安全的态势,从而更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。
© 2015-2024 杭州极速互联科技有限公司 版权所有 浙ICP备17047587号-4 浙公网安备33010502005096 增值电信业务经营许可证:浙B2-20190875